# Copyright 2019-2024 Cambridge Quantum Computing
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""`OutcomeArray` class and associated methods."""
import operator
from collections import Counter
from collections.abc import Sequence
from functools import reduce
from typing import Any, cast
import numpy as np
import numpy.typing as npt
from numpy.typing import ArrayLike
[docs]
class OutcomeArray(np.ndarray):
"""
Array of measured outcomes from qubits. Derived class of `numpy.ndarray`.
Bitwise outcomes are compressed into unsigned 8-bit integers, each
representing up to 8 qubit measurements. Each row is a repeat measurement.
:param width: Number of bit entries stored, less than or equal to the bit
capacity of the array.
:type width: int
:param n_outcomes: Number of outcomes stored.
:type n_outcomes: int
"""
def __new__(cls, input_array: npt.ArrayLike, width: int) -> "OutcomeArray":
# Input array is an already formed ndarray instance
# We first cast to be our class type
obj = np.asarray(input_array).view(cls)
# add the new attribute to the created instance
if len(obj.shape) != 2 or obj.dtype != np.uint8:
raise ValueError(
"OutcomeArray must be a two dimensional array of dtype uint8."
)
bitcapacity = obj.shape[-1] * 8
if width > bitcapacity:
raise ValueError(
f"Width {width} is larger than maxium bitlength of "
f"array: {bitcapacity}."
)
obj._width = width
# Finally, we must return the newly created object:
return obj
def __array_finalize__(self, obj: Any, *args: Any, **kwargs: Any) -> None:
# see InfoArray.__array_finalize__ for comments
if obj is None:
return
self._width: int | None = getattr(obj, "_width", None)
@property
def width(self) -> int:
"""Number of bit entries stored, less than or equal to the bit capacity of the
array."""
assert type(self._width) is int
return self._width
@property
def n_outcomes(self) -> Any:
"""Number of outcomes stored."""
return self.shape[0]
# A numpy ndarray is explicitly unhashable (its __hash__ has type None). But as we
# are dealing with integral arrays only it makes sense to define a hash.
def __hash__(self) -> int: # type: ignore
return hash((self.tobytes(), self.width))
def __eq__(self, other: object) -> bool:
if isinstance(other, OutcomeArray):
return bool(np.array_equal(self, other) and self.width == other.width)
return False
[docs]
@classmethod
def from_readouts(cls, readouts: ArrayLike) -> "OutcomeArray":
"""Create OutcomeArray from a 2D array like object of read-out integers,
e.g. [[1, 1, 0], [0, 1, 1]]"""
readouts_ar = np.array(readouts, dtype=int)
return cls(np.packbits(readouts_ar, axis=-1), readouts_ar.shape[-1])
[docs]
def to_readouts(self) -> np.ndarray:
"""Convert OutcomeArray to a 2D array of readouts, each row a separate outcome
and each column a bit value."""
return cast(
np.ndarray, np.asarray(np.unpackbits(self, axis=-1))[..., : self.width]
)
[docs]
def to_readout(self) -> np.ndarray:
"""Convert a singleton to a single readout (1D array)"""
if self.n_outcomes > 1:
raise ValueError(f"Not a singleton: {self.n_outcomes} readouts")
return cast(np.ndarray, self.to_readouts()[0])
[docs]
def to_intlist(self, big_endian: bool = True) -> list[int]:
"""Express each outcome as an integer corresponding to the bit values.
:param big_endian: whether to use big endian encoding (or little endian
if False), defaults to True
:type big_endian: bool, optional
:return: List of integers, each corresponding to an outcome.
:rtype: List[int]
"""
if big_endian:
array = self
else:
array = OutcomeArray.from_readouts(np.fliplr(self.to_readouts()))
bitcapacity = array.shape[-1] * 8
intify = lambda bytear: reduce(
operator.or_, (int(num) << (8 * i) for i, num in enumerate(bytear[::-1])), 0
) >> (bitcapacity - array.width)
intar = np.apply_along_axis(intify, -1, array)
return list(intar)
[docs]
@classmethod
def from_ints(
cls, ints: Sequence[int], width: int, big_endian: bool = True
) -> "OutcomeArray":
"""Create OutcomeArray from iterator of integers corresponding to outcomes
where the bitwise representation of the integer corresponds to the readouts.
:param ints: Iterable of outcome integers
:type ints: Iterable[int]
:param width: Number of qubit measurements
:type width: int
:param big_endian: whether to use big endian encoding (or little endian
if False), defaults to True
:type big_endian: bool, optional
:return: OutcomeArray instance
:rtype: OutcomeArray
"""
n_ints = len(ints)
bitstrings = (
bin(int_val)[2:].zfill(width)[:: (-1) ** (not big_endian)]
for int_val in ints
)
bitar = np.frombuffer(
"".join(bitstrings).encode("ascii"), dtype=np.uint8, count=n_ints * width
) - ord("0")
bitar.resize((n_ints, width))
return cls.from_readouts(bitar)
[docs]
def counts(self) -> Counter["OutcomeArray"]:
"""Calculate counts of outcomes in OutcomeArray
:return: Counter of outcome, number of instances
:rtype: Counter[OutcomeArray]
"""
ars, count_vals = np.unique(self, axis=0, return_counts=True)
width = self.width
oalist = [OutcomeArray(x[None, :], width) for x in ars]
return Counter(dict(zip(oalist, count_vals)))
[docs]
def choose_indices(self, indices: list[int]) -> "OutcomeArray":
"""Permute ordering of bits in outcomes or choose subset of bits.
e.g. [1, 0, 2] acting on a bitstring of length 4 swaps bit locations 0 & 1,
leaves 2 in the same place and deletes location 3.
:param indices: New locations for readout bits.
:type indices: List[int]
:return: New array corresponding to given permutation.
:rtype: OutcomeArray
"""
return OutcomeArray.from_readouts(self.to_readouts()[..., indices])
[docs]
def to_dict(self) -> dict[str, Any]:
"""Return a JSON serializable dictionary representation of the OutcomeArray.
:return: JSON serializable dictionary
:rtype: Dict[str, Any]
"""
return {"width": self.width, "array": self.tolist()}
[docs]
@classmethod
def from_dict(cls, ar_dict: dict[str, Any]) -> "OutcomeArray":
"""Create an OutcomeArray from JSON serializable dictionary (as created by
`to_dict`).
:param dict: Dictionary representation of OutcomeArray.
:type indices: Dict[str, Any]
:return: Instance of OutcomeArray
:rtype: OutcomeArray
"""
return OutcomeArray(
np.array(ar_dict["array"], dtype=np.uint8), width=ar_dict["width"]
)
[docs]
def readout_counts(
ctr: Counter[OutcomeArray],
) -> Counter[tuple[int, ...]]:
"""Convert counts from :py:class:`OutcomeArray` types to tuples of ints."""
return Counter({tuple(map(int, oa.to_readout())): int(n) for oa, n in ctr.items()})