Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode
Skip to content
λambeq 0.4.3
λambeq 0.4.3

Getting started

  • What is lambeq?
  • Installation
  • Troubleshooting
  • Contributing to lambeq

User guide

  • Pipeline
  • String diagrams
  • Syntactic parsing
  • lambeq use cases

NLP-101

  • Introduction
  • Working with text data
  • Text classification
  • Machine learning best practices
  • References for further study

Tutorials

  • Step 1. Sentence input
  • Step 2. Diagram rewriting
  • Step 3. Parameterisation
  • Step 4: Training
    • Training: Classical case
    • Training: Quantum case
    • Training: Hybrid case
  • Choosing a model
  • Advanced: Manual training
    • Introduction to symbols
    • A complete use case
  • Advanced: low-level lambeq
    • Monoidal categories in lambeq
    • DisCoCat in lambeq
  • Advanced: Extending lambeq
  • Examples
    • Tokenisation
    • Handling unknown words
    • Parser
    • Reader
    • Tree reader
    • Rewrite
    • Circuit
    • Tensor
    • Rotosolve optimizer
    • Classical pipeline
    • Quantum pipeline using the Quantum Trainer
    • Quantum pipeline using JAX backend
    • Training hybrid models using the Pennylane backend

Toolkit

  • lambeq package
  • Subpackages
  • Class diagrams
  • Command-line interface

Reference

  • Glossary
  • Bibliography
  • Index
  • Release notes

External links

  • Resources
  • Web demo
  • DisCoPy
Back to top
Copyright © 2024 Quantinuum Ltd. All rights reserved.
Privacy Statement
/
Cookie Notice
/
Terms and Conditions
Made with Sphinx and @pradyunsg's Furo