Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode
Skip to content
λambeq 0.5.0
λambeq 0.5.0

Getting started

  • What is lambeq?
  • Installation
  • Quickstart

User guide

  • lambeq and compositionality
  • Pipeline
  • String diagrams
  • Syntactic parsing
  • Machine learning with lambeq
    • Basic concepts
    • lambeq use cases
    • Choosing a model
  • Command-line interface

Training

  • From sentence to circuit
    • Step 1. Sentence input
    • Step 2. Diagram rewriting
    • Step 3. Parameterisation
  • From text to circuit
  • Training tutorials
    • Training: Classical case
    • Training: Quantum case
    • Training: Hybrid case
    • Training: DisCoCirc
    • Manual training
      • Introduction to symbols
      • A complete use case
  • Advanced: low-level lambeq
    • Monoidal categories in lambeq
    • DisCoCat in lambeq
  • Advanced: Extending lambeq
  • Code examples
    • Tokenisation
    • Handling unknown words
    • Parser
    • Reader
    • Tree reader
    • Rewrite
    • Circuit
    • Tensor
    • Rotosolve optimizer
    • Classical pipeline
    • Quantum pipeline using the Quantum Trainer
    • Quantum pipeline using JAX backend
    • Training hybrid models using the Pennylane backend
  • NLP-101
    • Introduction
    • Working with text data
    • Text classification
    • Machine learning best practices
    • References for further study

API

  • lambeq.ansatz
  • lambeq.backend
  • lambeq.bobcat
  • lambeq.core
  • lambeq.experimental
  • lambeq.rewrite
  • lambeq.text2diagram
  • lambeq.tokeniser
  • lambeq.training

Support

  • User support
  • Troubleshooting
  • Contributing to lambeq
  • How to cite
  • Licence
  • Release notes

Reference

  • Glossary
  • Bibliography
  • Index

External links

  • Resources
  • Web demo
  • DisCoPy
Back to top
Copyright © 2024 Quantinuum Ltd. All rights reserved.
Privacy Statement
/
Cookie Notice
/
Terms and Conditions
Made with Sphinx and @pradyunsg's Furo