Source code for lambeq.tokeniser.spacy_tokeniser

# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Spacy Tokeniser
===============
A tokeniser that wraps SpaCy.

"""

from __future__ import annotations

__all__ = ['SpacyTokeniser']

from collections.abc import Iterable
import logging
from typing import TYPE_CHECKING

from lambeq.tokeniser import Tokeniser

if TYPE_CHECKING:
    import spacy
    import spacy.cli


def _import_spacy() -> None:
    global spacy
    import spacy
    import spacy.lang.en
    import spacy.cli


[docs] class SpacyTokeniser(Tokeniser): """Tokeniser class based on SpaCy."""
[docs] def __init__(self) -> None: _import_spacy() try: self.tokeniser = spacy.load('en_core_web_sm') except OSError: logger = logging.getLogger(__name__) logger.warning('Downloading SpaCy tokeniser. ' 'This action only has to happen once.') spacy.cli.download('en_core_web_sm') self.tokeniser = spacy.load('en_core_web_sm') self.spacy_nlp = spacy.lang.en.English() self.spacy_nlp.add_pipe('sentencizer')
[docs] def split_sentences(self, text: str) -> list[str]: """Split input text into a list of sentences. Parameters ---------- text : str A single string that contains one or multiple sentences. Returns ------- list of str List of sentences, one sentence in each string. """ return [str(sent) for sent in self.spacy_nlp(text).sents]
[docs] def tokenise_sentences(self, sentences: Iterable[str]) -> list[list[str]]: """Tokenise a list of sentences. Parameters ---------- sentences : list of str A list of untokenised sentences. Returns ------- list of list of str A list of tokenised sentences, where each sentence is a list of tokens. """ disable = ['parser', 'tagger', 'ner', 'lemmatizer'] tokenised = [] for s in sentences: s_cleaned = ' '.join(s.split()) tokenised.append([ str(t) for t in self.tokeniser(s_cleaned, disable=disable) ]) return tokenised