Source code for lambeq.text2diagram.depccg_parser

# Copyright 2021-2024 Cambridge Quantum Computing Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
DepCCG parser
=============
Parser that wraps DepCCG.

"""

from __future__ import annotations

__all__ = ['DepCCGParser', 'DepCCGParseError']

from collections.abc import Iterable
import functools
import logging
from typing import Any, TYPE_CHECKING

from lambeq.core.globals import VerbosityLevel
from lambeq.core.utils import (
        SentenceBatchType, SentenceType,
        tokenised_batch_type_check, tokenised_sentence_type_check,
        untokenised_batch_type_check)
from lambeq.text2diagram.ccg_parser import CCGParser
from lambeq.text2diagram.ccg_rule import CCGRule
from lambeq.text2diagram.ccg_tree import CCGTree
from lambeq.text2diagram.ccg_type import CCGType

if TYPE_CHECKING:
    import depccg
    from depccg.annotator import (annotate_XX, english_annotator,
                                  japanese_annotator)
    from depccg.cat import Category
    from lambeq.backend.grammar import Diagram


def _import_depccg() -> None:
    global depccg, Category
    global annotate_XX, english_annotator, japanese_annotator
    import depccg
    import depccg.allennlp.utils
    from depccg.annotator import (annotate_XX, english_annotator,
                                  japanese_annotator)
    from depccg.cat import Category
    import depccg.lang
    import depccg.parsing


# disable irrelevant logging
logging.getLogger('allennlp.common.params').setLevel(logging.ERROR)
logging.getLogger('depccg.chainer.supertagger').setLevel(logging.ERROR)
logging.getLogger('depccg.lang').setLevel(logging.ERROR)


[docs] class DepCCGParseError(Exception):
[docs] def __init__(self, sentence: str) -> None: self.sentence = sentence
def __str__(self) -> str: # pragma: no cover return f'depccg failed to parse: "{self.sentence!r}".'
[docs] class DepCCGParser(CCGParser): """CCG parser using depccg as the backend.""" _raw_unary_rules = {'N': ['NP'], 'NP': [r'(S[X]/(S[X]\NP))', r'((S[X]\NP)\((S[X]\NP)/NP))', r'(((S[X]\NP)/NP)\(((S[X]\NP)/NP)/NP))', r'(((S[X]\NP)/PP)\(((S[X]\NP)/PP)/NP))'], 'PP': [r'((S[X]\NP)\((S[X]\NP)/PP))']} _unary_rules = None
[docs] def __init__(self, *, lang: str = 'en', model: str | None = None, use_model_unary_rules: bool = False, annotator: str = 'janome', tokenize: bool | None = None, device: int = -1, root_cats: Iterable[str] | None = None, verbose: str = VerbosityLevel.PROGRESS.value, **kwargs: Any) -> None: """Instantiate a parser based on `depccg`. Parameters ---------- lang : { 'en', 'ja' } The language to use: 'en' for English, 'ja' for Japanese. model : str, optional The name of the model variant to use, if any. `depccg` only has English model variants, namely 'elmo', 'rebank' and 'elmo_rebank'. use_model_unary_rules : bool, default: False Use the unary rules supplied by the model instead of the ones by `lambeq`. annotator : str, default: 'janome' The annotator to use, if any. `depccg` supports 'candc' and 'spacy' for English, and 'janome' and 'jigg' for Japanese. By default, no annotator is used for English, and 'janome' is used for Japanese. tokenize : bool, optional Whether to tokenise the input when annotating. This option should only be specified when using the 'spacy' annotator. device : int, optional The ID of the GPU to use. By default, uses the CPU. root_cats : iterable of str, optional A list of categories allowed at the root of the parse. By default, the English categories are: - S[dcl] - S[wq] - S[q] - S[qem] - NP and the Japanese categories are: - NP[case=nc,mod=nm,fin=f] - NP[case=nc,mod=nm,fin=t] - S[mod=nm,form=attr,fin=t] - S[mod=nm,form=base,fin=f] - S[mod=nm,form=base,fin=t] - S[mod=nm,form=cont,fin=f] - S[mod=nm,form=cont,fin=t] - S[mod=nm,form=da,fin=f] - S[mod=nm,form=da,fin=t] - S[mod=nm,form=hyp,fin=t] - S[mod=nm,form=imp,fin=f] - S[mod=nm,form=imp,fin=t] - S[mod=nm,form=r,fin=t] - S[mod=nm,form=s,fin=t] - S[mod=nm,form=stem,fin=f] - S[mod=nm,form=stem,fin=t] verbose : str, default: 'progress', Controls the command-line output of the parser. Only 'progress' option is available for this parser. **kwargs : dict, optional Optional arguments passed to `depccg`. """ self.verbose = verbose if self.verbose != VerbosityLevel.PROGRESS.value: raise ValueError('DepCCGParser only supports ' '"progress" level of verbosity. ' f'`{self.verbose}` was given.') _import_depccg() if lang.lower() == 'en': if root_cats is None: root_cats = ['S[dcl]', 'S[wq]', 'S[q]', 'S[qem]', 'NP'] self.annotator_fun = english_annotator.get(annotator, annotate_XX) self.tokenize = tokenize if tokenize is not None else False elif lang.lower() == 'ja': if root_cats is None: root_cats = ['NP[case=nc,mod=nm,fin=f]', 'NP[case=nc,mod=nm,fin=t]', 'S[mod=nm,form=attr,fin=t]', 'S[mod=nm,form=base,fin=f]', 'S[mod=nm,form=base,fin=t]', 'S[mod=nm,form=cont,fin=f]', 'S[mod=nm,form=cont,fin=t]', 'S[mod=nm,form=da,fin=f]', 'S[mod=nm,form=da,fin=t]', 'S[mod=nm,form=hyp,fin=t]', 'S[mod=nm,form=imp,fin=f]', 'S[mod=nm,form=imp,fin=t]', 'S[mod=nm,form=r,fin=t]', 'S[mod=nm,form=s,fin=t]', 'S[mod=nm,form=stem,fin=f]', 'S[mod=nm,form=stem,fin=t]'] self.annotator_fun = japanese_annotator.get(annotator, annotate_XX) self.tokenize = tokenize if tokenize is not None else True else: raise ValueError('DepCCGParser does not support language: ' f'`{lang}`.') depccg.lang.set_global_language_to(lang) self.supertagger, config = depccg.instance_models.load_model(model, device) (self.apply_binary_rules, self.apply_unary_rules, self.category_dict, _) = depccg.allennlp.utils.read_params(config.config) if not use_model_unary_rules: if self._unary_rules is None: DepCCGParser._unary_rules = { Category.parse(key): [*map(Category.parse, values)] for key, values in self._raw_unary_rules.items()} self.apply_unary_rules = functools.partial( depccg.instance_models.GRAMMARS[lang].apply_unary_rules, unary_rules=self._unary_rules ) self.root_categories = [*map(Category.parse, root_cats)] self.categories: list[Category] | None = None self.kwargs = kwargs self._last_trees: list[CCGTree | None] = []
[docs] def sentences2trees(self, sentences: SentenceBatchType, tokenised: bool = False, suppress_exceptions: bool = False, verbose: str | None = None) -> list[CCGTree | None]: """Parse multiple sentences into a list of :py:class:`.CCGTree` s. Parameters ---------- sentences : list of str, or list of list of str The sentences to be parsed, passed either as strings or as lists of tokens. suppress_exceptions : bool, default: False Whether to suppress exceptions. If :py:obj:`True`, then if a sentence fails to parse, instead of raising an exception, its return entry is :py:obj:`None`. tokenised : bool, default: False Whether each sentence has been passed as a list of tokens. verbose : str, optional Controls the form of progress tracking. If set, takes priority over the :py:attr:`verbose` attribute of the parser. This class only supports 'progress' verbosity level - a progress bar. Returns ------- list of CCGTree or None The parsed trees. May contain :py:obj:`None` if exceptions are suppressed. Raises ------ ValueError : If `tokenised` does not match with the input type or if verbosity is set to an unsupported value """ if verbose is None: verbose = self.verbose if verbose != VerbosityLevel.PROGRESS.value: raise ValueError('DepCCGParser only supports ' '"progress" level of verbosity. ' f'`{self.verbose}` was given.') if tokenised: if not tokenised_batch_type_check(sentences): raise ValueError('`tokenised` set to `True`, but variable ' '`sentences` does not have type ' '`list[list[str]]`.') if TYPE_CHECKING: # temporary fix from typing import cast sentences = cast(list[list[str]], sentences) else: if not untokenised_batch_type_check(sentences): raise ValueError('`tokenised` set to `False`, but variable ' '`sentences` does not have type ' '`list[str]`.') sent_list: list[str] = [str(s) for s in sentences] sentences = [sentence.split() for sentence in sent_list] empty_indices = [] for i, sentence in enumerate(sentences): if not sentence: if suppress_exceptions: empty_indices.append(i) else: raise ValueError('sentence is empty.') for i in reversed(empty_indices): del sentences[i] trees = self._last_trees = [] if sentences: parses = self._depccg_parse(sentences) for (depccg_tree, *_), sentence in zip(parses, sentences): if depccg_tree.score > float('-inf'): trees.append(self._build_ccgtree(depccg_tree.tree)) elif suppress_exceptions: trees.append(None) else: raise DepCCGParseError(' '.join(sentence)) for i in empty_indices: trees.insert(i, None) return trees
[docs] def sentence2tree(self, sentence: SentenceType, tokenised: bool = False, suppress_exceptions: bool = False) -> CCGTree | None: """Parse a sentence into a :py:class:`.CCGTree`. Parameters ---------- sentence : str, list[str] The sentence to be parsed, passed either as a string, or as a list of tokens. suppress_exceptions : bool, default: False Whether to suppress exceptions. If :py:obj:`True`, then if the sentence fails to parse, instead of raising an exception, returns :py:obj:`None`. tokenised : bool, default: False Whether the sentence has been passed as a list of tokens. Returns ------- CCGTree or None The parsed tree, or :py:obj:`None` on failure. Raises ------ ValueError : If `tokenised` does not match with the input type. """ if tokenised: if not tokenised_sentence_type_check(sentence): raise ValueError('`tokenised` set to `True`, but variable ' '`sentence` does not have type ' '`list[str]`.') sent: list[str] = [str(token) for token in sentence] return self.sentences2trees( [sent], suppress_exceptions=suppress_exceptions, tokenised=tokenised, verbose=VerbosityLevel.PROGRESS.value)[0] else: if not isinstance(sentence, str): raise ValueError('`tokenised` set to `False`, but variable ' '`sentence` does not have type `str`.') return self.sentences2trees( [sentence], suppress_exceptions=suppress_exceptions, tokenised=tokenised, verbose=VerbosityLevel.PROGRESS.value)[0]
[docs] def sentence2diagram(self, sentence: SentenceType, tokenised: bool = False, planar: bool = False, collapse_noun_phrases: bool = True, suppress_exceptions: bool = False) -> Diagram | None: """Parse a sentence into a lambeq diagram. Parameters ---------- sentence : str, list[str] The sentence to be parsed, passed either as a string, or as a list of tokens. tokenised : bool, default: False Whether the sentence has been passed as a list of tokens. collapse_noun_phrases : bool, default: True If set, then before converting each tree to a diagram, all noun phrase types in the tree are changed into nouns. This includes sub-types, e.g. `S/NP` becomes `S/N`. suppress_exceptions : bool, default: False Whether to suppress exceptions. If :py:obj:`True`, then if the sentence fails to parse, instead of raising an exception, returns :py:obj:`None`. Returns ------- :py:class:`lambeq.backend.grammar.Diagram` or None The parsed diagram, or :py:obj:`None` on failure. Raises ------ ValueError : If `tokenised` does not match with the input type. """ if tokenised: if not tokenised_sentence_type_check(sentence): raise ValueError('`tokenised` set to `True`, but variable ' '`sentence` does not have type ' '`list[str]`.') sent: list[str] = [str(token) for token in sentence] return self.sentences2diagrams( [sent], planar=planar, collapse_noun_phrases=collapse_noun_phrases, suppress_exceptions=suppress_exceptions, tokenised=tokenised, verbose=VerbosityLevel.PROGRESS.value)[0] else: if not isinstance(sentence, str): raise ValueError('`tokenised` set to `False`, but variable ' '`sentence` does not have type `str`.') return self.sentences2diagrams( [sentence], planar=planar, collapse_noun_phrases=collapse_noun_phrases, suppress_exceptions=suppress_exceptions, tokenised=tokenised, verbose=VerbosityLevel.PROGRESS.value)[0]
def _depccg_parse( self, sentences: list[list[str]]) -> list[list[depccg.tree.ScoredTree]]: doc = self.annotator_fun(sentences, tokenize=self.tokenize) score_result, categories = self.supertagger.predict_doc( [[token.word for token in sentence] for sentence in doc]) if self.categories is None: self.categories = [*map(Category.parse, categories)] doc, score_result = depccg.parsing.apply_category_filters( doc, score_result, self.categories, self.category_dict) ret: list[list[depccg.tree.ScoredTree]] ret = depccg.parsing.run(doc, score_result, self.categories, self.root_categories, self.apply_binary_rules, self.apply_unary_rules, **self.kwargs) return ret @staticmethod def _to_biclosed(cat: Category) -> CCGType: """Transform a depccg category into a biclosed type.""" if not cat.is_functor: if cat.base == 'N': return CCGType.NOUN elif cat.base == 'NP': return CCGType.NOUN_PHRASE if cat.base == 'S': return CCGType.SENTENCE if cat.base == 'PP': return CCGType.PREPOSITIONAL_PHRASE if cat.base == 'conj': return CCGType.CONJUNCTION if cat.base in ('LRB', 'RRB') or cat.base in ',.:;': return CCGType.PUNCTUATION else: result = DepCCGParser._to_biclosed(cat.left) argument = DepCCGParser._to_biclosed(cat.right) return result.slash(cat.slash, argument) raise Exception(f'Invalid CCG type: {cat.base}') @staticmethod def _build_ccgtree(tree: depccg.tree.Tree) -> CCGTree: """Transform a depccg derivation tree into a `CCGTree`.""" biclosed_type = DepCCGParser._to_biclosed(tree.cat) if tree.is_leaf: children = [] rule = 'L' else: children = [*map(DepCCGParser._build_ccgtree, tree.children)] if tree.op_string == 'tr': rule = 'FTR' if biclosed_type.direction == '/' else 'BTR' elif tree.op_symbol == '<un>': rule = 'U' elif tree.op_string in ('gbx', 'gfc'): rule = CCGRule.infer_rule( [child.biclosed_type for child in children], biclosed_type ) else: rule = tree.op_string.upper() return CCGTree(text=tree.word, rule=rule, biclosed_type=biclosed_type, children=children, metadata={'original': tree})