.. _sec-training: Training tutorials ================== The following examples demonstrate the usage of the :py:mod:`.training` package for classical and quantum training scenarios. .. toctree:: :maxdepth: 1 :hidden: ../tutorials/trainer-classical.ipynb ../tutorials/trainer-quantum.ipynb ../tutorials/trainer-hybrid.ipynb ../tutorials/discocirc-mc-task.ipynb manual-training - :ref:`Classical case ` Convert :term:`string diagrams ` into tensor networks and train them with :term:`PyTorch`. - :ref:`Quantum case ` Create :term:`quantum circuits ` using the :term:`tket` backend and train them with :py:class:`~lambeq.training.QuantumTrainer`. - :ref:`Hybrid case ` See how to utilise the powerful :term:`PennyLane` backend to train pure and hybrid quantum models. - :ref:`DisCoCirc training ` Convert entire paragraphs or documents into :term:`DisCoCirc` circuits and train them with ``lambeq``'s :py:class:`~lambeq.training.PennyLaneModel`. - :ref:`Manual pipeline ` Learn how to create custom training loops for your ``lambeq`` models. .. rubric:: See also: - :ref:`sec-ml-lambeq`